

16104 120 MINUTES

1.	In a m A) B) C) D)	olecule of phos 4 P- P, 10 P – 4 P – O and 2 6 P – P, 12 P – 12 P – O and	O and A P = O l - O and	4 P = O bonds 4 P = 0	bonds				
2.	Which A)	of the following	ng elem B)	ents has Al	the hig	shest thi	rd ionization e Si	nergy?	P
3.	Which A)	among the foll	lowing B)	element Li	has the	e lowest C)	electron affini Be	ty? D)	Cl
4.	A radi A) C)	oactive materia 1000 years 20000 years	ıl has a	half-life	of 138 B) D)	6 years. 13860 2000 y	years	e is	
5.	What i	is Nitrolium? CaCN ₂ CaCN ₂ + C			B) D)	CaC ₂ CaC +	CaCN ₂		
6.		of the followin C ₂ , (ii) Al ₄ C ₃ ,	_			e?			
	A) C)	(i) only (i), (ii) & (iii)	only		B) D)	(i) & (All of	ii) only these		
7.	Which A)	of the following Mn	ng trans B)	ition me Os	etal exh	ibits hig C)	ghest oxidation Cr	state? D)	Ti
8.	Horn s	silver is AgCl	B)	Ag_2S		C)	$AgSb_2S_5$	D)	AgNO
9.	Which A)	among the lan	thanide B)	s does n Pm	ot occu	r in nat C)	ure? Gd	D)	Eu
10.	Which A)	among the following Pr ³⁺	lowing B)	lanthani Nd ³⁺	ide ion i	is colou C)	rless? Gd ³⁺	D)	Eu ³⁺
11.	The get A) B) C)	cometries of Ni Square planar Tetrahedral & Square planar	& squatetrahe	are plana dral ahedral		spective	ly are		

12.	Coval	lent nature of metal-ligand bo			y						
	A)	VB theory	B)	Crystal field theory							
	C)	Ligand field theory	D)	MO theory							
13.	$[Co(H_2O)_6]^{2+}$ and $[CoCl_4]^{2-}$ show magnetic moments of 5.0 and 4.4 BM, respectively, because										
	A) The latter has lesser number of unpaired electrons										
	B)	Of the quenching of the orb latter	ital con	tribution to the magnetic mo	oment in the						
	C)	Of antiferromagnetic proper	rty of th	e latter							
	D)	Of spin-cross over phenome	enon in	the latter							
14.	The ground term symbol of a transition metal ion is ⁴ F .Thus the values of L and S are										
	A)	L=3, S=3	B)	L=3, $S=3/2$							
		L=2, S=3/2	D)								
	٠,	2 2, 2 2/2	2)	2 0,0 1							
15.		ed colour of HgS is due to	>) (T. OTT.							
	A)	LMCT	B)	MLCT							
	C)	d-d transition	D)	σ - σ * transition							
16.	The a	symmetric nature of the UV v	isible s	pectrum of [Ti(H ₂ O) ₆] ³⁺ is c	lue to						
	A)	Charge transfer transition		Spin forbidden transition							
	C)	p- d transition	D)	Jahn-Teller effect							
	,	1	,								
17.	At Neel temperature (T_N) a paramagnetic material is changed into										
	A)	Diamagnetic	B)	Ferromagnetic							
	C)	Antiferromagnetic	D)	Ferrimagnetic							
18.	The number of bridging carbonyls and M-M bonds in Co ₄ (CO) ₁₂ are respectively										
	A)	3 & 6 B) 6 & 4		C) 6 & 6 D)	-						
10	XX 71	1 1 . 1	CO :								
19.		back donation from metal to			en						
	A) Both M-C and C-O bond lengths become shorter.										
	,	B) M-C bond becomes stronger and C-O bond becomes weaker									
	D)	Both M-C and C-O bonds become weakerBoth M-C and C-O bonds become stronger									
	D)	Dotti Wi-C and C-O bonds b	ecome	Stronger							
20.	Whic	h among the following comple	exes do	es not obey 18 electron rule	?						
	A)	Ni(CO) ₄	B)	$Mn_2(CO)_{10}$							
	C)	$V(CO)_6$	D)	$Co_2(CO)_8$							
21.	The h	apticity(η) of the ligand Cp ir	the fol	lowing sandwich compound	ls						
		$C_5H_5)_2$ and (ii) Be($C_5H_5)_2$ are		-							
		505: (1) 505: (11)	ъ`	505: (X 504: (X							
	A)	5 & 5 in (i), 5 & 5 in (ii)	B)	5 & 5 in (i), 5 & 1 in (ii)							
	C)	5 & 1 in (i), 5 & 5 in (ii)	D)	5 & 5 in (i), 4 & 4 in (ii)							

22.	Myog A) C)	lobin and oxyn Diamagnetic Diamagnetic	& diam	nagnetic	B)	Param	agnetic & para agnetic & diar		
23.	Metal A) B) C) D)	loenzymes resp Carboxypept: Carbonic anh Peroxidase & Ascorbate ox	idase & ydrase Catala	peroxid & Catala se	ase ase) ₂ are		
24.	Which A)	n among the fo	llowing B)	is an oro Ilmani		nium? C)	Malachite	D)	Calamine
25.	The ty A) C)	pe of steel use Silicon steel Nickel steel	d for ha	andling a	cids is B) D)		nium steel nese steel		
26.		n used in electred is used for the Van Arkel de Zone refining	e purifi Boer p	ication o		n? Electro	e. Which amor olytic refining onal crystalliza	_	llowing
27.	The ca A) C)	Pd(PPh ₃) ₄ & (PtCl ₄] ²⁻ & C	CuCl	used in V	Wacker j B) D)	CuCl ₂		re	
28.	Enant A) C)	ioselective hyd Wilkinson's o Raney Ni			rochiral B) D)	Zeigle	s are done by r- Natta cataly into process	vst	
29.	The co	o-ordination nu 6, 6	mbers (B)	of Zn ²⁺ a 4, 6	and S^{2-} i	n zinc b C)	olende are resp 4, 4	pectively D)	8, 8
30.	The b	and structure o	f a p-ty	pe semic	onducto	or is			
energy	- 1								
	1	I	II		III	I	IV		
	A)	I	B)	II		C)	III	D)	IV

31.	An exa	ample of a solic NaCl	d electro B)	olyte is α- Ag	Т	C)	FeO	D)	Al_2O_3	
						,				
32.		filler indices of and -2c are	a crysta	al plane	which o	cuts the	three crystallo	graphic	axes at	
	A)	$32\overline{2}$	B)	$22\overline{3}$		C)	$23\overline{3}$	D)	3 2 3	
33.	Match	the following								
	Col	<u>umn I</u>	Colum	nn II						
	(a)	$ZnFe_2O_4$	(i) P	erovski	te					
	(c)	MnCr ₂ O ₄ CaTiO ₃ Na ₂ S	(iii) S (iv) F	antifluor pinel luorite nverse s						
	A) C)	a-v, b-iii, c-i, c a-iii, b-v, c-iv,			B) D)		e-iv, c-i, d- ii e-i, c-ii, d- iv			
34.	Classit b = 0.9 A)	fy the following 947 nm and c = Triclinic Orthorhombic		ell into $\alpha = 4$	a proper 11 ⁰ , β = B) D)	r crystal 82 ⁰ and Monoo Hexag	clinic	08 nm,		
2.5				0 1'	,				L CILO	
35.	is is	es of H ₂ O ₂ prod	auce 10	io ntres	oi oxyg	en at S	1P, the volume	strengt	$101 H_2 O_2$	
	A)	5V	B)	10V		C)	20V	D)	100V	
36.	If 0.5 mole of BaCl ₂ is mixed with 0.2 mole of Na ₃ PO ₄ , the maximum number of moles of barium phosphate that can be formed is									
	A)	0.2	В)	0.5	06 10111	C)	0.3	D)	0.1	
37.		able reagent for Dimethylglyo K ₂ CrO ₄								
38.		among the follochrome black?						Murexid	e	
	A) C)	(i), (ii) only (i), (ii) & (iii)	only		B) D)	(i), (iii All of) & (iv) only these			
39.	The pr A) C)	oper no. of sign Three; three; f Three; two; on	four; th	ree	in 0.12 B) D)	Four;	400.0; 0.0780 three; one; thre three; four; five	e	pectively	

- In the estimation of Ca²⁺ ions using EDTA and Solochrome Black, substitution 40. method is used. Why?
 - Ca²⁺ ions form less stable complexes than Mg²⁺ ions with the indicator, A) but more stable complex with EDTA
 - Ca²⁺ ions form more stable complexes than Mg²⁺ ions with the indicator, B) but less stable complex with EDTA
 - Ca²⁺ ions get precipitated as Ca(OH)₂ C)
 - No suitable buffer solution for maintaining the pH is available. D)
- 41. Match List I (Reaction) with List II (intermediates)

List I	List II
a) Dieckmann condensation	i) Carbene
b) Friedel-Crafts alkylation	ii) Nitrene
c) Curtius rearrangement	iii) Carbocation
d) Riemer –Tiemann reaction	iv) Carbanion

- a-iv, b-iii, c-ii, d- i A)
- B) a-iii, b-iv, c-i, d- ii
- a-iii, b-ii, c-iv, d- i C)
- D) a-iv, b-i, c-ii, d-iii
- 42. The stability order of carbocations
 - A) $C_6H_5^+ < C_6H_5CH_2^+ < p-CIC_6H_4-CH_2^+$ B) $C_6H_5CH_2^+ < p-CIC_6H_4CH_2^+ < C_6H_5^+$
 - C) $C_6H_5^+ < p-ClC_6H_4-CH_2^+ < C_6H_5CH_2^+$ D) $C_6H_5CH_2^+ < C_6H_5^+ < p-ClC_6H_4CH_2^+$
- 43. The stability order of the following free radicals is

- i < ii < iii < iv iv < iii < i < iiA)
- $i_V < ii < i < iii$ B)
- C)
- i < ii < iv < iiiD)
- 44. Which among the following can have permanent dipole moment?

A) I, II & III B) II, III & IV C) II & IV D) I & IV

45. The major product in the following reaction is

46. The major product of the following reaction is

47. The major product of the following reaction is

A)
$$CH_3$$
 CH_3 CH_4 CH_5 CH_5

CH₃

- 48. Intramolecular Claisen condensation is called
 - A) Michael Addition
- B) Robinson annulation
- C) Perkin Condensation
- D) Dieckmann Condensation
- 49. The major product X formed in the following reaction is

- When alkyl halides react with OH⁽⁻⁾ ions depending on solvent polarity the rate of 50.
 - Reaction is not influenced by the solvent
 - S_N1 reaction increased with solvent polarity B)
 - C) S_N2 reaction is increased with solvent polarity
 - S_N1 reaction decreased with solvent polarity D)
- 51. Which of the following molecules are optically active?

- I, II, & IIIonly A)
- II & IV only B)
- C) II, III, & IV only D) All the four
- 52. The compound CH₃ (CHBr)₅CH₃ has
 - 32 stereoisomers with 4 meso forms A)
 - 16 optical isomers and 4 meso forms B)
 - C) 16 optical isomers with no meso form
 - D) 12 optically active and 4 meso forms
- 53. The absolute configuration of the aldohexose given below is

- A) 2R, 3S, 4R, 5R
- B) 2R, 3S, 4S, 5R
- C) 2S, 3R, 4R, 5S
- D) 2S, 3S, 4R, 5S

C)

- 54. If the specific rotation of a pure R- enantiomer is -13.5° and another sample of the same compound showed a specific rotation of $+2.7^{\circ}$. The ratio of the amounts of Rand S- enantiomers present in the sample is
 - R: S = 3: 2A)
- R: S = 3: 4B)
- R: S = 2: 3
- D) R:S = 4:3

55. The correct statement regarding the following reactions is

- A) (I) gives E-alkene & (II) gives Z-alkene and both reactions are stereospecific.
- B) (I) gives Z-alkene & (II) gives E-alkene and both reactions are stereospecific.
- C) Both (I) & (II) give E- alkene and both reactions are stereo selective
- D) Both (I) & (II) give Z- alkene and both reactions are stereo selective
- 56. The following reaction is an example of

- A) NorishType II reaction B) Di- π methane rearrangement
- C) Lumiketone rearrangement D) Paterno- Buchi reaction
- 57. The reaction of hexa- 1,3,5-triene to give cyclohexa-1,3-triene is an example of
 - A) Diels Alder reaction
- B) Sigmetropic reaction
- C) Electro cyclic reaction
- D) None of the above
- 58. The correct statement of the following transforation is

- A) Photochemical antarafacial [1, 7]H shift
- B) Photochemical suprafacial [1, 7]H shift
- C) Thermal antarafacial [1, 5]H shift
- D) Photochemical suprafacial [1, 5]H shift

59. The major product of the following reaction is

60. In the following reactions, the conditions X and Y are

- A) $X = hv, Y = \Delta$
- B) $X = \Delta$, Y = hv
- C) X = hv, Y = hv
- D) $X = \Delta$, $Y = \Delta$
- 61. The IR stretching frequencies of C=O group in RCOOH, RCOCl, (RCO)₂O and RCONH₂ varies as
 - A) $RCOC1 < RCOOH < (RCO)_2O < RCONH_2$
 - B) $(RCO)_2O < RCONH_2 < RCOCl < RCOOH$
 - C) $RCONH_2 < RCOCl < RCOOH < (RCO)_2O$
 - D) $RCONH_2 < RCOOH < (RCO)_2O < RCOC1$

62. A compound with molecular formula $C_{10}H_{10}O_4$ showed a strong IR band at 1685 cm⁻¹. The ¹HNMR spectrum showed two doublets and one singlet. The compound is

63. The most stable conformation of ethylene glycol is

- 64. In the mass spectrum of CHB r_3 , ratio of the peaks at M/z 250, 252, 254, 256 respectively is
 - A) 1:3:3:1
- B) 1:3:2:1
- C) 3:1:1:3
- D) 9:6:3:1
- 65. In the broad band decoupled ¹³CNMR spectrum, the number of signals in anthracene and phenanthrene respectively are
 - A) Seven and seven
- B) Four and four
- C) Seven and four
- D) Four and seven
- 66. When α -pinene is treated with ethanolic sulphuric acid it is converted to
 - A) β-pinene
- B) δ-pinene
- C) α-terpineol
- D) pinol
- 67. Which among the following statements about camphor is/are true?
 - (I) Camphor has two different asymetric centres, but only one pair of enantiomers exists.
 - (II) The cyclohexane ring in camphor is in the chair conformation.
 - (III) The cyclohexane ring in camphor is in boat conformation and there is a gem dimethyl bridge.
 - A) I only
- B) I & III only
- C) III only
- D) I and II only

- 68. The number of heterocyclic nitrogen bases and the no. of chiral centres present in the alkaloid quinine are respectively
 - A) 2 & 5
- B) 2 & 4
- C) 1 & 5
- D) 1 & 4
- 69. Match the following structures with the class of compounds

Column I Column II

(I)

O H

a) monoterpene

(III) R c) flavone

(IV) $\begin{array}{c} CH_3 \\ \\ H_3C \\ \end{array}$ d) isoflavone

- A) I-b, II-c, III-a, IV-d
- B) I- c, II- d, III-b, IV- a
- C) I– a, II–d, III–b, IV–c
- D) I- c, II- d, III-a, IV- b
- 70. The vitamin which is synthesised from sugar is
 - A) Vitamin A

B) Vitamin K

C) Vitamin D

- D) Vitamin C
- 71. Treatment of the Tetrapeptide Gly Arg Phe Ala with the enzyme Trypsin splits the peptide into
 - A) Gly + Arg Phe Ala
- B) Gly Arg + Phe Ala
- C) Gly Arg Phe + Ala
- D) Gly + Arg + Phe + Ala
- 72. The bases which is not present in DNA is
 - A) Adenine

B) Thymine

C) Uracil

D) Cytosine

73.	The polysaccharide present in animal tissue is										
	A)	Glycogen		B)	Amylopecti	n					
	C)	α-amylose		D)	Inulin						
74.	Whic	h among the follow	ing is not f	ormed	l by radical pol	ymerisat	tion?				
	A)	Polythene B) PVC		C) Poly	styrene	D)	Nylon-6			
75.	Whic	h among the follow	ing are biod	legrac							
	(i)	Polyhydroxybuty	rate	(ii)	Polyhydrox	yvalerate	e				
	(iii)	Polycaprolactone	e	(iv)	Polyvenyla	lcohol					
	A)	(i), (ii) only		B)	(i), (iii) onl	y					
	C)	(i), (ii) & (iv) on	ıly	D)	All of these						
76.	Matcl	the following									
		Column I			Column II						
		(a) Acrilan			(i) $C_6H_5CH=$	$=CH_2$					
		(b) Plexiglass	S		(ii) $CF_2=CF_2$						
		(c) Styrene			(iii) CH ₂ =CH						
		(d) Teflon			(iv) Methyl n	nethacryl	ate				
	A)	a-iii, b- iv, c-i, d-		B)	a-ii, b- iv, c	-iii, d-i					
	C)	a-iv, b- iii, c-i, d-	·ii	D)	a-iii, b- iv,	c-ii, d-i					
77.	Which of the following polymer is not having cross-linkages?										
	A)	Bakelite		B)	Melmac						
	C)	Polythene		D)	Vulcanised	rubber					
78.	The order of increasing eluting power of the following solvents in column chromatography is										
	A)										
	B)	Hexane < Benzer	ne < Chloro	form <	< Ethanol						
	C) Hexane < Chloroform < Benzene < Ethanol										
	D)	Hexane < Ethano	ol < Chlorof	orm <	Benzene						
79.	In the detection of nitrogen, the blue / green colour is due to the formation of										
	A)	$Fe_4[Fe(CN)_6]_3$		B)	$Fe_3[Fe(CN)]$						
	C)	$Na_3[Fe(CN)_6]$		D)	Na ₄ [Fe(CN]) ₆]					
80.	Platin	um- salt method is	used for the			olecular	weight o	of			
	A)	Carboxylic acids		B)	Amines						
	C)	Aldehydes		D)	Phenols						
81.		irst emission line or $R_H = Rydberg con$		ries of	He ⁺ -spectrum	n has way	ve no. in				
	A)	$\frac{3}{4}R_H$ B)	É		C) $\frac{5}{9}R_H$	D)	$\frac{1}{4}R_H$				

82.	Which of the following is an eigen function of the operator P_x ?	_
	A) e^{ikx} B) xe^{ikx} C) $x^2 + 2x$ D)	cos2x
83.	The angular momentum of an electron in the 4d-orbital is	
	A) $\frac{2h}{\pi}$ B) $\sqrt{2}\frac{h}{2\pi}$ C) $\sqrt{3}\frac{h}{2\pi}$ D)	$\sqrt{6} \frac{h}{2\pi}$
84.	The average radius of 1s orbital of H-atom is	
	A) a_0 B) $2a_0$ C) $1.5a_0$ D)	$3a_0$
85.	The number of radial nodes present in 4f-orbitals is A) Zero B) One C) Two D)	Three
	Tr) Zelo B) Che C) Two B)	Timee
86.	If a trial wave function is used to calculate the energy of a quantum mecha system, the calculated energy is always greater than the true energy. This is related to A) Perturbation theory B) Variation principle C) Born-Oppenheimer approximation D) Heizenberg's uncertainty principle	
87.	According to MO theory the ground state wave function including spin of molecule isrepresented as $A) \frac{1}{\sqrt{2}} \begin{vmatrix} \sigma_g 1s(1)\alpha(1) & \sigma_g 1s(1)\beta(1) \\ \sigma_g 1s(2)\alpha(2) & \sigma_g 1s(2)\beta(2) \end{vmatrix} B) \frac{1}{\sqrt{2}} \begin{vmatrix} \sigma_u 1s(1)\alpha(1) & \sigma_u 1s(1)\beta(1) \\ \sigma_g 1s(2)\alpha(2) & \sigma_g 1s(2)\beta(2) \end{vmatrix}$ $\frac{1}{\sqrt{2}} \begin{vmatrix} \sigma_a 1s(1)\alpha(1) & \sigma_a 1s(2)\beta(2) \\ \sigma_g 1s(2)\alpha(1) & \sigma_a 1s(1)\beta(1) \end{vmatrix}$	H ₂
	$C)\frac{1}{\sqrt{2}}\begin{vmatrix} \sigma_g 1s(1)\alpha(1) & \sigma_g 1s(2)\beta(2) \\ \sigma_g 1s(1)\beta(2) & \sigma_g 1s(2)\alpha(1) \end{vmatrix} D)\frac{1}{\sqrt{2}}\begin{vmatrix} \sigma_g 1s(1)\alpha(1) & \sigma_u 1s(1)\beta(1) \\ \sigma_g 1s(2)\alpha(2) & \sigma_u 1s(2)\beta(2) \end{vmatrix}$	
88.	The angle between the two hybrid orbitals ψ_1 and ψ_2 shown below is $\psi_1 = \frac{1}{\sqrt{3}} 2s - \frac{1}{\sqrt{6}} 2p_x + \frac{1}{\sqrt{2}} 2p_y$	
	$\psi_2 = \frac{1}{\sqrt{3}} 2s - \frac{1}{\sqrt{6}} 2p_x - \frac{1}{\sqrt{2}} 2p_y$	
	A) 90° B) 109.5° C) 120° D)	180°
89.	The product of $C_{2(x)} \times C_{2(y)} =$ A) E B) σ_{xy} C) i D)	$C_{2(z)}$
90.	Molecules falling in which of the point groups possess a permanent dipole A) C_i , C_s , C_n , C_{nv} B) C_{nv} , C_s , C_i , C_{nh}	moment?
	C) C_{nv}, C_{nh}, C_s D) C_i, C_s, D_{nh}	

The character table of $C_{2\nu}$ point group is given below. The reducible representation of the translational degrees of freedom Γ_{tran} is 91.

C_{2v}	Е	C_2	σ_{xz}	σ_{yz}		
A_1	1	1	1	1	Z	x^2,y^2,z^2
A_2	1	1	-1	-1	Rz	xy
B_1	1	-1	1	-1	x,Ry	XZ
B_2	1	-1	-1	1	y, Rx	yz

	A_1	1	1	1	1	Z	x^2,y^2,z^2	•
	A_2	1	1	-1	-1	Rz	xy	
	B_1	1	-1	1	-1	x,Ry	XZ	
	B_2	1	-1	-1	1	y, Rx	yz	
		, 1, 1, 1 , -1, -1, -1			3, -1, -1, 1 3, -1, 1, 1			
92.	Α) σ	ange of NO ⁺ orbital * orbital	to NO the e	lectron is a B) D)	added to π orbital π^* orbital			
93.		f the followings, (ii)	ng molecules CO ₂ , (iii)			CH ₄		
		& ii only , iii & iv only	ý	B) D)	ii & iii only	•		
94.		line of R-bra 9 cm ⁻¹ , B= 6.		ibration- r	otation spec	tra of HI w	vill occur at	
	A) 2	322.22 cm ⁻¹ 325.44 cm ⁻¹	,	B) D)		n ⁻¹ n ⁻¹		
95.	A) R B) M C) M	f the following toot mean square velocity Mean velocity Mean square v	uare velocity velocity		nest value?			
96.	The No.	of hyperfine	lines in the	esr spectru	m of CD26	CH₃ radio	cal is	
	A) 1	2	B) 15		C) 20		D) 25	
97.	The sele	ction rule for	rotational R	aman spec	etra of linear	rotors is		

A) $\Delta J = \pm 1$ C) $\Delta J = 0, \pm 2$ B) $\Delta J = \pm 1, \pm 2$

D) $\Delta J = 0, \pm 1, \pm 2$ 98. The distribution of molecular velocities of a sample at three different temperatures is represented below. The variation of temperatures is

- $T_1\!< T_2\!< T_3$ A)
- $T_1 > T_2 < T_3 \\ T_1 > T_2 > T_3$ B)
- $T_1 < T_2 > T_3$ C)

D)

99. Match the following transport properties of perfect gases

Column I

- a. Coefficient of viscosity(η)
- Column II $\frac{\frac{1}{3}\lambda \bar{c} \ C_{v}[A]}{\frac{1}{3}\lambda \bar{c}}$
- b. Coefficient of thermal conductivity(κ)
- Coefficient of diffusion(D)
- $\frac{1}{3}\lambda \bar{c}$ mN

- a-i, b-ii, c iii A)
- B) a - ii, b - i, c - iii
- C) a - iii, b - i, c - ii
- D) a - iii, b - ii, c - i

100. A mixture of hydrogen and oxygen in the 2:1 volume ratio is allowed to diffuse through a porous portion. The composition of gas coming out initially, vol of H_2 : vol of O_2 is

- A) 8:1
- B) 4:1
- C) 2:1
- D) 1:1

101. Find out the microstate for p⁵

- A)
- B) 7
- C) 8
- D) 9

 $\left(\frac{\partial U}{\partial V}\right)_T$ for an ideal gas is 102.

6

Zero A)

Positive B)

Negative C)

D) Infinity

Which of the following may be used to define chemical potential? 103.

- (i) $\left(\frac{\partial G}{\partial n_i}\right) T, P, nj$
- (ii) $\left(\frac{\partial H}{\partial n_i}\right) S, P, nj$
- (iii) $\left(\frac{\partial A}{\partial n_i}\right) T, V, nj$ (iv) $\left(\frac{\partial U}{\partial n_i}\right) S, V, nj; i \neq j$
- i only A)

- B) i & ii only
- C) iii & iv only
- D) i, ii, iii, & iv

105. For the following reaction, the partial pressures of CO_2 and CO are 4 and 8 atm. respectively at equilibrium at 1000K. Kp for the reaction is $C_{(s)} + CO_{2(g)} = 2 CO_{(g)}$							8 atm.				
	A)	32 atm	B)	4 atm		C)	16 atm	D)	2 atm		
106.		pressure tempe lid- liquid and l Critical point Melting point	liquid- v	-		ntersect Triple	is	the point	t where		
107.	Intern	Internal energy in terms of partition function (Q) is given by									
	A) C)	$kT^{2} \left(\frac{\partial lnQ}{\partial T}\right)_{V,N}$ $kT \left(\frac{\partial lnQ}{\partial V}\right)_{T,N}$	I		B) D)	$kT^2 \left(\frac{c}{2}\right)$	$\left(\frac{\partial lnQ}{\partial T}\right)_{P,N}$				
108.		e reaction 2 A = $k [A]^2$, $t_{1/2}$ of $\frac{1}{k}$				C)	$\frac{1}{[A_0]k}$	D)	$\frac{1}{[A_0]^3k}$		
109.	-	t of log [A] vers of the reaction zero			es a stra	ight line C)	_	ve slope D)	The 3		
110.		pecific reaction $11.5 - \frac{12510}{T}$. T							by		
	A)	250	B)	125		C)	85	D)	104		
111.		ding to absolut mentary bimole Zero Positive Negative Positive for e	ecular re	eaction i	is		ar entropy of a				
112.	The mA)	umber of electrons 0.001 N_0	ons lost B)	during 0.01 N		ysis of C)	0.355 g of Cl ⁻ i 0.02 N ₀	is D)	0.01/2 N ₀		

Which among the following is the condition for a reversible process?

B)

D)

 $\Delta S_{(universe)} = 0$

 $\Delta S_{(universe)} > 0$

104.

A)

C)

 $\Delta H_{(universe)} \le 0$

 $\Delta U_{(universe)}\!\!<0$

113.	3. The Freundlich adsorption isotherm is								
	$A) \qquad \theta = c_1 p^{1/c_2}$	B)	$\theta = c_1 ln(c_2 p))$						
	C) $\theta = \frac{\kappa p}{1 + \kappa p}$	D)	$Kp = \frac{\theta}{1 - \theta}$						
114.	Match the following								
	<u>Column I</u>		Column II						
	a Catalyst and reactants in different phase	i	Homogeneous catalysi	.S					
	b The phenomenon of one of the products acts as a catalyst	ie ii	Heterogeneous catalys	is					
	c Catalyst and reactants in the same phase	iii	Negative catalysis						
	d When the catalyst reduces the speed of the reaction	e iv	Auto catalysis						
	A) a-ii, b-iv, c-iii, d-i C) a-ii, b-iv, c-i, d-iii	B) D)	a- ii, b-i, c-iv, d-iii a-iii, b-ii, c-iv, d-i						
115.	The presence of electrical charges of A) Ultra filtration C) Brownian movement	on collo B) D)	idal particles is used in Dialysis Electrophoresis						
116.	The p ^H of a mixture of 0.01M acetic acid is 4.76)	e acid a							
	A) 4.46 B) 5.76		C) 3.76	D)	4.76				
117.	The ionic strength of a 0.05M Na ₂ S A) 0.15 M B) 0.25 I		eous solution is C) 0.025 M	D)	0.05 M				
118.	Calomel electrode is reversible with A) Hg ²⁺ C) Both Hg ²⁺ and Cl ⁻	B)	et to (Hg) ₂ ²⁺ Cl						
119.	The emf of the concentration cell is	Pt H ₂	(1atm) HCl(a ₁) HCl(a ₂) H ₂ (1a	atm) Pt				
	A) $E = 2t_{-}\frac{RT}{F}\ln\frac{(a_{\pm})_{2}}{(a_{\pm})_{1}}$	B)	$E = 2t_{+} \frac{RT}{F} \ln \frac{\left(a_{\pm}\right)_{2}}{\left(a_{\pm}\right)_{1}}$						
	C) $E = 2t_{-}\frac{RT}{F}\ln\frac{(a_{\pm})_{1}}{(a_{\pm})_{2}}$	D)	$E = 2t_{+} \frac{RT}{F} \ln \frac{\left(a_{\pm}\right)_{1}}{\left(a_{\pm}\right)_{2}}$						

120. Which of the following diagrams represent the conductometric titration curve of the precipitation reaction of KCl with AgNO₃?

- A) I
- II

B)

- C) III
- D) IV