1. In a molecule of phosphorous (V) oxide, there are
A) $4 \mathrm{P}-\mathrm{P}, 10 \mathrm{P}-\mathrm{O}$ and $4 \mathrm{P}=\mathrm{O}$ bonds
B) $\quad 4 \mathrm{P}-\mathrm{O}$ and $2 \mathrm{P}=\mathrm{O}$ bonds
C) $6 \mathrm{P}-\mathrm{P}, 12 \mathrm{P}-\mathrm{O}$ and $4 \mathrm{P}=\mathrm{O}$ bonds
D) $\quad 12 \mathrm{P}-\mathrm{O}$ and $4 \mathrm{P}=\mathrm{O}$ bonds
2. Which of the following elements has the highest third ionization energy?
A) $\quad \mathrm{Mg}$
B) Al
C) $\quad \mathrm{Si}$
D) $\quad \mathrm{P}$
3. Which among the following element has the lowest electron affinity?
A) $\quad \mathrm{N}$
B) $\quad \mathrm{Li}$
C) Be
D) $\quad \mathrm{Cl}$
4. A radioactive material has a half-life of 1386 years. Its average life is
A) 1000 years
B) 13860 years
C) 20000 years
D) 2000 years
5. What is Nitrolium?
A) CaCN_{2}
B) $\quad \mathrm{CaC}_{2}$
C) $\mathrm{CaCN}_{2}+\mathrm{C}$
D) $\mathrm{CaC}+\mathrm{CaCN}_{2}$
6. Which of the following is/ are saline carbide?
(i) CaC_{2}, (ii) $\mathrm{Al}_{4} \mathrm{C}_{3}$, (iii) KC_{8}, (iv) SiC
A) (i) only
B) (i) \& (ii) only
C) (i), (ii) \& (iii) only
D) All of these
7. Which of the following transition metal exhibits highest oxidation state?
A) Mn
B) Os
C) Cr
D) $\quad \mathrm{Ti}$
8. Horn silver is
A) AgCl
B) $\quad \mathrm{Ag}_{2} \mathrm{~S}$
C) $\quad \mathrm{AgSb}_{2} \mathrm{~S}_{5}$
D) $\quad \mathrm{AgNO}_{3}$
9. Which among the lanthanides does not occur in nature?
A) $\quad \mathrm{Pr}$
B) $\quad \mathrm{Pm}$
C) $\quad \mathrm{Gd}$
D) Eu
10. Which among the following lanthanide ion is colourless?
A) Pr^{3+}
B) $\quad \mathrm{Nd}^{3+}$
C) $\quad \mathrm{Gd}^{3+}$
D) Eu^{3+}
11. The geometries of $\mathrm{NiCl}_{4}{ }^{2-}$ and $\mathrm{Ni}(\mathrm{CN})_{4}{ }^{2-}$ respectively are
A) Square planar \& square planar
B) Tetrahedral \& tetrahedral
C) Square planar \& tetrahedral
D) Tetrahedral \& square planar
12. Covalent nature of metal-ligand bond in complexes is not explained by
A) VB theory
B) Crystal field theory
C) Ligand field theory
D) MO theory
13. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{CoCl}_{4}\right]^{2-}$ show magnetic moments of 5.0 and 4.4 BM , respectively, because
A) The latter has lesser number of unpaired electrons
B) Of the quenching of the orbital contribution to the magnetic moment in the latter
C) Of antiferromagnetic property of the latter
D) Of spin-cross over phenomenon in the latter
14. The ground term symbol of a transition metal ion is ${ }^{4} F$. Thus the values of L and S are
A) $\mathrm{L}=3, \mathrm{~S}=3$
B) $\mathrm{L}=3, \mathrm{~S}=3 / 2$
C) $\quad \mathrm{L}=2, \mathrm{~S}=3 / 2$
D) $L=3, S=1$
15. The red colour of HgS is due to
A) LMCT
B) MLCT
C) d-d transition
D) $\quad \sigma-\sigma^{*}$ transition
16. The asymmetric nature of the UV visible spectrum of $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is due to
A) Charge transfer transition
B) \quad Spin forbidden transition
C) p-d transition
D) Jahn-Teller effect
17. At Neel temperature $\left(\mathrm{T}_{\mathrm{N}}\right)$ a paramagnetic material is changed into
A) Diamagnetic
B) Ferromagnetic
C) Antiferromagnetic
D) Ferrimagnetic
18. The number of bridging carbonyls and $\mathrm{M}-\mathrm{M}$ bonds in $\mathrm{Co}_{4}(\mathrm{CO})_{12}$ are respectively
A) $3 \& 6$
B) $6 \& 4$
C) $6 \& 6$
D) $4 \& 4$
19. When back donation from metal to CO in metal carbonyl increases, then
A) Both M-C and $\mathrm{C}-\mathrm{O}$ bond lengths become shorter.
B) M-C bond becomes stronger and $\mathrm{C}-\mathrm{O}$ bond becomes weaker
C) Both M-C and C-O bonds become weaker
D) Both M-C and C-O bonds become stronger
20. Which among the following complexes does not obey 18 electron rule?
A) $\quad \mathrm{Ni}(\mathrm{CO})_{4}$
B) $\quad \mathrm{Mn}_{2}(\mathrm{CO})_{10}$
C) $\quad \mathrm{V}(\mathrm{CO})_{6}$
D) $\quad \mathrm{Co}_{2}(\mathrm{CO})_{8}$
21. The hapticity (η) of the ligand Cp in the following sandwich compounds (i) $\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ and (ii) $\mathrm{Be}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ are respectively
A) $5 \& 5$ in (i), $5 \& 5$ in (ii)
B) $5 \& 5$ in (i), $5 \& 1$ in (ii)
C) $5 \& 1$ in (i), $5 \& 5$ in (ii)
D) $5 \& 5$ in (i), $4 \& 4$ in (ii)
22. Myoglobin and oxymyoglobin respectively are
A) Diamagnetic \& diamagnetic B) Paramagnetic \& paramagnetic
C) Diamagnetic \& paramagnetic D) Paramagnetic \& diamagnetic
23. Metalloenzymes responsible for the removal of $\mathrm{H}_{2} \mathrm{O}_{2}$ are
A) Carboxypeptidase \& peroxidase
B) Carbonic anhydrase \& Catalase
C) Peroxidase \& Catalase
D) Ascorbate oxidase \& cytochrome oxidase
24. Which among the following is an ore of titanium?
A) Monozite
B) Ilmanite
C) Malachite
D) Calamine
25. The type of steel used for handling acids is
A) Silicon steel
B) Chromium steel
C) Nickel steel
D) Manganese steel
26. Silicon used in electronic industry must be ultrapure. Which among the following method is used for the purification of silicon?
A) Van Arkel de Boer process
B) Electrolytic refining
C) Zone refining
D) Fractional crystallization
27. The catalyst and cocatalyst used in Wacker process respectively are
A) $\quad \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} \& \mathrm{CuCl}$
B) $\quad \mathrm{CuCl}_{2} \& \mathrm{Pd}$
C) $\quad\left[\mathrm{PtCl}_{4}\right]^{2-} \& \mathrm{CuCl}_{2}$
D) $\quad \mathrm{PdCl}_{2} \& \mathrm{CuCl}_{2}$
28. Enantioselective hydrogenation of prochiral alkenes are done by
A) Wilkinson's catalyst
B) Zeigler- Natta catalyst
C) Raney Ni
D) Monsanto process
29. The co-ordination numbers of Zn^{2+} and S^{2-} in zinc blende are respectively
A) 6,6
B) 4,6
C) 4,4
D) 8,8
30. The band structure of a p-type semiconductor is

I

II

III
IV
A) I
B) II
C) III
D) IV
31. An example of a solid electrolyte is
A) $\quad \mathrm{NaCl}$
B) $\quad \alpha-\mathrm{AgI}$
C) FeO
D) $\quad \mathrm{Al}_{2} \mathrm{O}_{3}$
32. The Miller indices of a crystal plane which cuts the three crystallographic axes at $3 \mathrm{a}, 2 \mathrm{~b}$ and -2 c are
A) $32 \overline{2}$
B) $22 \overline{3}$
C) $23 \overline{3}$
D) $32 \overline{3}$
33. Match the following

Column I Column II
(a) $\mathrm{ZnFe}_{2} \mathrm{O}_{4}$
(i) Perovskite
(b) $\mathrm{MnCr}_{2} \mathrm{O}_{4}$
(ii) Antifluorite
(c) CaTiO_{3}
(iii) Spinel
(d) $\mathrm{Na}_{2} \mathrm{~S}$
(iv) Fluorite
(v) Inverse spinal
A) $\quad \mathrm{a}-\mathrm{v}, \mathrm{b}-\mathrm{iii}, \mathrm{c}-\mathrm{i}, \mathrm{d}-\mathrm{ii}$
B) a-iii, b-iv, c-i, d- ii
C) a-iii, b-v, c-iv, d- i
D) a-iii, b-i, c-ii, d- iv
34. Classify the following unit cell into a proper crystal system: $\mathrm{a}=1.08 \mathrm{~nm}$, $\mathrm{b}=0.947 \mathrm{~nm}$ and $\mathrm{c}=0.52 \mathrm{~nm} ; \alpha=41^{0}, \beta=82^{\circ}$ and $\gamma=95^{\circ}$
A) Triclinic
B) Monoclinic
C) Orthorhombic
D) Hexagonal
35. If 5 litres of $\mathrm{H}_{2} \mathrm{O}_{2}$ produce 100 litres of oxygen at STP, the volume strength of $\mathrm{H}_{2} \mathrm{O}_{2}$ is
A) 5 V
B) $\quad 10 \mathrm{~V}$
C) $\quad 20 \mathrm{~V}$
D) 100 V
36. If 0.5 mole of BaCl_{2} is mixed with 0.2 mole of $\mathrm{Na}_{3} \mathrm{PO}_{4}$, the maximum number of moles of barium phosphate that can be formed is
A) 0.2
B) 0.5
C) 0.3
D) 0.1
37. A suitable reagent for the gravimetric estimation of lead is
A) Dimethylglyoxime
B) KCNS
C) $\quad \mathrm{K}_{2} \mathrm{CrO}_{4}$
D) HCl
38. Which among the following is/are metal ion indicators?
(i) Eriochrome blackT, (ii) Benzidine, (iii) Xylenol orange, (iv) Murexide
A) (i), (ii) only
B) (i), (iii) \& (iv) only
C) (i), (ii) \& (iii) only
D) All of these
39. The proper no. of significant figures in $0.126 ; 20.9 ; 400.0 ; 0.0780$ are respectively
A) Three; three; four; three
B) Four; three; one; three
C) Three; two; one; three
D) Four; three; four; five
40. In the estimation of Ca^{2+} ions using EDTA and Solochrome Black, substitution method is used. Why?
A) Ca^{2+} ions form less stable complexes than Mg^{2+} ions with the indicator, but more stable complex with EDTA
B) Ca^{2+} ions form more stable complexes than Mg^{2+} ions with the indicator, but less stable complex with EDTA
C) $\quad \mathrm{Ca}^{2+}$ ions get precipitated as $\mathrm{Ca}(\mathrm{OH})_{2}$
D) No suitable buffer solution for maintaining the pH is available.
41. Match List I (Reaction) with List II (intermediates)

List I	List II
a) Dieckmann condensation	i) Carbene
b) Friedel-Crafts alkylation	ii) Nitrene
c) Curtius rearrangement	iii) Carbocation
d) Riemer -Tiemann reaction	iv) Carbanion

A) a-iv, b-iii, c-ii, d- i
B) a-iii, b-iv, c-i, d- ii
C) a-iii, b-ii, c-iv, d- i
D) a-iv, b-i, c-ii, d- iii
42. The stability order of carbocations
A) $\mathrm{C}_{6} \mathrm{H}_{5}^{+}<\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}^{+}<\mathrm{p}-\mathrm{ClC}_{6} \mathrm{H}_{4}-\mathrm{CH}_{2}^{+}$
B) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}^{+}<\mathrm{p}-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}^{+}<\mathrm{C}_{6} \mathrm{H}_{5}^{+}$
C) $\mathrm{C}_{6} \mathrm{H}_{5}^{+}<\mathrm{p}-\mathrm{ClC}_{6} \mathrm{H}_{4}-\mathrm{CH}_{2}^{+}<\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}{ }^{+}$
D) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}^{+}<\mathrm{C}_{6} \mathrm{H}_{5}^{+}<\mathrm{p}-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}^{+}$
43. The stability order of the following free radicals is

A) \quad i $<$ ii $<$ iii $<$ iv
B) \quad iv $<$ ii $<$ i $<$ iii
C) \quad iv $<$ iii $<$ i $<$ ii
D) \quad i $<$ ii $<$ iv $<$ iii
44. Which among the following can have permanent dipole moment?

I

II

III

IV
A)
I, II \& III
B)
II, III \& IV
C) II \& IV
D) I \& IV
45. The major product in the following reaction is

A)

B)

C)

D)

46. The major product of the following reaction is

A)

B)

C)

D)

47. The major product of the following reaction is

A)

C)

B)

48. Intramolecular Claisen condensation is called
A) Michael Addition
B) Robinson annulation
C) Perkin Condensation
D) Dieckmann Condensation
49. The major product X formed in the following reaction is

A)

B)

C)

D)

50. When alkyl halides react with $\mathrm{OH}^{(-)}$ions depending on solvent polarity the rate of
A) Reaction is not influenced by the solvent
B) $\quad \mathrm{S}_{\mathrm{N}} 1$ reaction increased with solvent polarity
C) $\quad \mathrm{S}_{\mathrm{N}} 2$ reaction is increased with solvent polarity
D) $\quad \mathrm{S}_{\mathrm{N}} 1$ reaction decreased with solvent polarity
51. Which of the following molecules are optically active?

(I)

(II)

(III)

(IV)
A) I, II, \& IIIonly
B) II \& IV only
C) II, III, \& IV only
D) All the four
52. The compound $\mathrm{CH}_{3}(\mathrm{CHBr})_{5} \mathrm{CH}_{3}$ has
A) 32 stereoisomers with 4 meso forms
B) 16 optical isomers and 4 meso forms
C) 16 optical isomers with no meso form
D) 12 optically active and 4 meso forms
53. The absolute configuration of the aldohexose given below is

A) $\quad 2 \mathrm{R}, 3 \mathrm{~S}, 4 \mathrm{R}, 5 \mathrm{R}$
B) $\quad 2 \mathrm{R}, 3 \mathrm{~S}, 4 \mathrm{~S}, 5 \mathrm{R}$
C) $\quad 2 \mathrm{~S}, 3 \mathrm{R}, 4 \mathrm{R}, 5 \mathrm{~S}$
D) $\quad 2 \mathrm{~S}, 3 \mathrm{~S}, 4 \mathrm{R}, 5 \mathrm{~S}$
54. If the specific rotation of a pure R - enantiomer is -13.5° and another sample of the same compound showed a specific rotation of $+2.7^{\circ}$. The ratio of the amounts of $R-$ and S - enantiomers present in the sample is
A)
$\mathrm{R}: \mathrm{S}=3: 2$
B) $\quad R: S=3: 4$
C)
$R: S=2: 3$
D) $\quad R: S=4: 3$
55. The correct statement regarding the following reactions is

A) (I) gives E-alkene \& (II) gives Z-alkene and both reactions are stereospecific.
B) (I) gives Z-alkene \& (II) gives E-alkene and both reactions are stereospecific.
C) Both (I) \& (II) give E- alkene and both reactions are stereo selective
D) Both (I) \& (II) give Z- alkene and both reactions are stereo selective
56. The following reaction is an example of

A) NorishType II reaction
B) Di- π - methane rearrangement
C) Lumiketone rearrangement
D) Paterno- Buchi reaction
57. The reaction of hexa- 1,3,5-triene to give cyclohexa-1,3-triene is an example of
A) Diels Alder reaction
B) Sigmetropic reaction
C) Electro cyclic reaction
D) None of the above
58. The correct statement of the following transfomation is

A) Photochemical antarafacial $[1,7] \mathrm{H}$ shift
B) Photochemical suprafacial [1, 7]H shift
C) Thermal antarafacial $[1,5] \mathrm{H}$ shift
D) Photochemical suprafacial [1, 5]H shift
59. The major product of the following reaction is

60. In the following reactions, the conditions X and Y are

A) $\quad \mathrm{X}=\mathrm{h} v, \mathrm{Y}=\Delta$
B) $\mathrm{X}=\Delta, \mathrm{Y}=\mathrm{h} v$
C) $\quad \mathrm{X}=\mathrm{h} v, \mathrm{Y}=\mathrm{h} v$
D) $\quad \mathrm{X}=\Delta, \mathrm{Y}=\Delta$
61. The IR stretching frequencies of $\mathrm{C}=\mathrm{O}$ group in $\mathrm{RCOOH}, \mathrm{RCOCl},(\mathrm{RCO})_{2} \mathrm{O}$ and RCONH_{2} varies as
A) $\mathrm{RCOCl}<\mathrm{RCOOH}<(\mathrm{RCO})_{2} \mathrm{O}<\mathrm{RCONH}_{2}$
B) $\quad(\mathrm{RCO})_{2} \mathrm{O}<\mathrm{RCONH}_{2}<\mathrm{RCOCl}<\mathrm{RCOOH}$
C) $\mathrm{RCONH}_{2}<\mathrm{RCOCl}<\mathrm{RCOOH}<(\mathrm{RCO})_{2} \mathrm{O}$
D) $\mathrm{RCONH}_{2}<\mathrm{RCOOH}<(\mathrm{RCO})_{2} \mathrm{O}<\mathrm{RCOCl}$
62. A compound with molecular formula $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}$ showed a strong IR band at $1685 \mathrm{~cm}^{-1}$. The ${ }^{1}$ HNMR spectrum showed two doublets and one singlet. The compound is
A)

B)

C)

D)

63. The most stable conformation of ethylene glycol is
A.

B.

C.

D.

64. In the mass spectrum of CHBr_{3}, ratio of the peaks at $\mathrm{M} / \mathrm{z} 250,252,254,256$ respectively is
A) $1: 3: 3: 1$
B) $1: 3: 2: 1$
C) $3: 1: 1: 3$
D) $\quad 9: 6: 3: 1$
65. In the broad band decoupled ${ }^{13} \mathrm{CNMR}$ spectrum, the number of signals in anthracene and phenanthrene respectively are
A) Seven and seven
B) Four and four
C) Seven and four
D) Four and seven
66. When α-pinene is treated with ethanolic sulphuric acid it is converted to
A) $\quad \beta$-pinene
B) δ-pinene
C) $\quad \alpha$-terpineol
D) pinol
67. Which among the following statements about camphor is/are true?
(I) Camphor has two different asymetric centres, but only one pair of enantiomers exists.
(II) The cyclohexane ring in camphor is in the chair conformation.
(III) The cyclohexane ring in camphor is in boat conformation and there is a gem dimethyl bridge.
A) I only
B) I \& III only
C) III only
D) I and II only
68. The number of heterocyclic nitrogen bases and the no. of chiral centres present in the alkaloid quinine are respectively
A) $2 \& 5$
B) $2 \& 4$
C) $1 \& 5$
D) $1 \& 4$
69. Match the following structures with the class of compounds

Column I

(I)

a) monoterpene
(II)

(III)

A) I- $\mathrm{I}, \mathrm{II}-\mathrm{c}$, III- $\mathrm{a}, \mathrm{IV}-\mathrm{d}$
B) I- c, II- d, III-b, IV- a
C) I- a, II-d, III- b, IV-c
D) I- c, II- d, III-a, IV-b
70. The vitamin which is synthesised from sugar is
A) Vitamin A
B) \quad Vitamin K
C) Vitamin D
D) Vitamin C
71. Treatment of the Tetrapeptide Gly - Arg - Phe - Ala with the enzyme Trypsin splits the peptide into
A) Gly + Arg - Phe - Ala
B) $\mathrm{Gly}-\mathrm{Arg}+\mathrm{Phe}-\mathrm{Ala}$
C) $\mathrm{Gly}-\mathrm{Arg}-\mathrm{Phe}+$ Ala
D) $\mathrm{Gly}+\mathrm{Arg}+$ Phe + Ala
72. The bases which is not present in DNA is
A) Adenine
B) Thymine
C) Uracil
D) Cytosine
73. The polysaccharide present in animal tissue is
A) Glycogen
B) Amylopectin
C) α-amylose
D) Inulin
74. Which among the following is not formed by radical polymerisation?
A) Polythene
B) $\quad \mathrm{PVC}$
C) Polystyrene
D) Nylon-6
75. Which among the following are biodegradable polymers?
(i) Polyhydroxybutyrate
(ii) Polyhydroxyvalerate
(iii) Polycaprolactone
(iv) Polyvenylalcohol
A) (i), (ii) only
B) (i), (iii) only
C) (i), (ii) \& (iv) only
D) All of these
76. Match the following

Column I
(a) Acrilan
(b) Plexiglass
(c) Styrene
(d) Teflon
A) a-iii, b- iv, c-i, d-ii
B) $\quad \mathrm{a}-\mathrm{ii}, \mathrm{b}-\mathrm{iv}, \mathrm{c}-\mathrm{iii}, \mathrm{d}-\mathrm{i}$
C) a-iv, b- iii, c-i, d-ii
D) \quad-iii, $b-i v, c-i i, d-i$
77. Which of the following polymer is not having cross-linkages?
A) Bakelite
B) Melmac
C) Polythene
D) Vulcanised rubber
78. The order of increasing eluting power of the following solvents in column chromatography is
A) Chloroform $<$ Benzene $<$ Hexane $<$ Ethanol
B) Hexane $<$ Benzene $<$ Chloroform $<$ Ethanol
C) Hexane $<$ Chloroform $<$ Benzene $<$ Ethanol
D) Hexane $<$ Ethanol $<$ Chloroform $<$ Benzene
79. In the detection of nitrogen, the blue / green colour is due to the formation of
A) $\quad \mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}$
B) $\quad \mathrm{Fe}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2}$
C) $\quad \mathrm{Na}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
D) $\quad \mathrm{Na}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
80. Platinum- salt method is used for the determination of molecular weight of
A) Carboxylic acids
B) Amines
C) Aldehydes
D) Phenols
81. The first emission line of Balmer series of He^{+}-spectrum has wave no. in $\mathrm{cm}-1\left(\mathrm{R}_{\mathrm{H}}=\right.$ Rydberg constant $)$
A) $\frac{3}{4} R_{H}$
B) $\frac{5}{36} R_{H}$
C) $\quad \frac{5}{9} R_{H}$
D) $\frac{1}{4} R_{H}$
82. Which of the following is an eigen function of the operator \hat{P}_{x} ?
A) $e^{i k x}$
B) $x e^{i k x}$
C) $x^{2}+2 x$
D) $\quad \cos 2 x$
83. The angular momentum of an electron in the $4 d$-orbital is
A) $\frac{2 h}{\pi}$
B) $\sqrt{2} \frac{h}{2 \pi}$
C) $\sqrt{3} \frac{h}{2 \pi}$
D) $\sqrt{6} \frac{h}{2 \pi}$
84. The average radius of 1 s orbital of H -atom is
A) a_{0}
B) $\quad 2 \mathrm{a}_{0}$
C) $\quad 1.5 \mathrm{a}_{0}$
D) $\quad 3 a_{0}$
85. The number of radial nodes present in 4f-orbitals is
A) Zero
B) One
C) Two
D) Three
86. If a trial wave function is used to calculate the energy of a quantum mechanical system, the calculated energy is always greater than the true energy. This statement is related to
A) Perturbation theory
B) Variation principle
C) Born-Oppenheimer approximation
D) Heizenberg's uncertainty principle
87. According to MO theory the ground state wave function including spin of H_{2} molecule isrepresented as

$$
\begin{aligned}
& \text { A) } \frac{1}{\sqrt{2}}\left|\begin{array}{ll}
\sigma_{g} 1 s(1) \alpha(1) & \sigma_{g} 1 s(1) \beta(1) \\
\sigma_{g} 1 s(2) \alpha(2) & \sigma_{g} 1 s(2) \beta(2)
\end{array}\right| \text { B) } \frac{1}{\sqrt{2}}\left|\begin{array}{ll}
\sigma_{u} 1 s(1) \alpha(1) & \sigma_{u} 1 s(1) \beta(1) \\
\sigma_{g} 1 s(2) \alpha(2) & \sigma_{g} 1 s(2) \beta(2)
\end{array}\right| \\
& \text { C) } \frac{1}{\sqrt{2}}\left|\begin{array}{ll}
\sigma_{g} 1 s(1) \alpha(1) & \sigma_{g} 1 s(2) \beta(2) \\
\sigma_{g} 1 s(1) \beta(2) & \sigma_{g} 1 s(2) \alpha(1)
\end{array}\right| \text { D) } \frac{1}{\sqrt{2}}\left|\begin{array}{ll}
\sigma_{g} 1 s(1) \alpha(1) & \sigma_{u} 1 s(1) \beta(1) \\
\sigma_{g} 1 s(2) \alpha(2) & \sigma_{u} 1 s(2) \beta(2)
\end{array}\right|
\end{aligned}
$$

88. The angle between the two hybrid orbitals ψ_{1} and ψ_{2} shown below is
$\psi_{1}=\frac{1}{\sqrt{3}} 2 \mathrm{~s}-\frac{1}{\sqrt{6}} 2 p_{x}+\frac{1}{\sqrt{2}} 2 p_{y}$
$\psi_{2}=\frac{1}{\sqrt{3}} 2 s-\frac{1}{\sqrt{6}} 2 p_{x}-\frac{1}{\sqrt{2}} 2 p_{y}$
A) 90°
B) $\quad 109.5^{\circ}$
C) 120°
D) 180°
89. The product of $\mathrm{C}_{2(\mathrm{x})} \times \mathrm{C}_{2(\mathrm{y})}=$
A) E
B) $\sigma_{x y}$
C) i
D) $\quad \mathrm{C}_{2(\mathrm{z})}$
90. Molecules falling in which of the point groups possess a permanent dipole moment?
A) $\quad C_{i}, C_{s}, C_{n}, C_{n v}$
B) $\quad C_{n v}, C_{s}, C_{i}, C_{n h}$
C) $\quad C_{n v}, C_{n h}, C_{s}$
D) $\quad C_{i}, C_{S}, D_{n h}$
91. The character table of $\mathrm{C}_{2 \mathrm{v}}$ point group is given below. The reducible representation of the translational degrees of freedom $\Gamma_{\text {tran }}$ is

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	σ_{xz}	σ_{yz}		
A_{1}	1	1	1	1	z	$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}$	1	1	-1	-1	Rz	xy
B_{1}	1	-1	1	-1	x, Ry	xz
B_{2}	1	-1	-1	1	y, Rx	yz

A) $3,1,1,1$
B) $3,-1,-1,1$
C) $3,-1,-1,-1$
D) $3,-1,1,1$
92. In the change of NO^{+}to NO the electron is added to
A) $\quad \sigma$ orbital
B) π orbital
C) $\quad \sigma^{*}$ orbital
D) $\quad \pi^{*}$ orbital
93. Which of the following molecules are IR active?
(i) $\quad \mathrm{N}_{2}$,
(ii) CO_{2},
(iii)
$\mathrm{CH}_{2}==\mathrm{CH}_{2}$, (iv)
CH_{4}
A) i \& ii only
B) ii \& iii only
C) ii, iii \& iv only
D) i \& iv only
94. The first line of R-branch in the vibration- rotation spectra of HI will occur at ($\bar{v}=2309 \mathrm{~cm}^{-1}, \mathrm{~B}=6.61 \mathrm{~cm}^{-1}$)
A) $\quad 2322.22 \mathrm{~cm}^{-1}$
B) $\quad 2337.66 \mathrm{~cm}^{-1}$
C) $\quad 2325.44 \mathrm{~cm}^{-1}$
D) $\quad 2295.78 \mathrm{~cm}^{-1}$
95. Which of the following would have the highest value?
A) Root mean square velocity
B) Most probable velocity
C) Mean velocity
D) Mean square velocity
96. The No. of hyperfine lines in the esr spectrum of $\dot{\mathrm{C}} \mathrm{D}_{2} \mathrm{CH}_{3}$ radical is
A) 12
B) 15
C) 20
D) 25
97. The selection rule for rotational Raman spectra of linear rotors is
A) $\Delta \mathrm{J}= \pm 1$
B) $\quad \Delta \mathrm{J}= \pm 1, \pm 2$
C) $\Delta \mathrm{J}=0, \pm 2$
D) $\quad \Delta \mathrm{J}=0, \pm 1, \pm 2$
98. The distribution of molecular velocities of a sample at three different temperatures is represented below. The variation of temperatures is

A) $\mathrm{T}_{1}<\mathrm{T}_{2}<\mathrm{T}_{3}$
B) $\quad \mathrm{T}_{1}>\mathrm{T}_{2}<\mathrm{T}_{3}$
C) $\quad T_{1}<T_{2}>T_{3}$
D) $\quad T_{1}>T_{2}>T_{3}$
99. Match the following transport properties of perfect gases

Column I
a. Coefficient of viscosity (η)
(i) $\frac{\text { Column II }}{\frac{1}{3} \lambda \bar{c} \mathrm{C}_{\mathrm{v}}[\mathrm{A}]}$
b. Coefficient of thermal
(ii) $\frac{1}{3} \lambda \bar{c}$ conductivity(κ)
(iii) ${ }_{3}^{1} \lambda \bar{c} \mathrm{mN}$
A) a-i, b-ii, c - iii
B) $\quad \mathrm{a}-\mathrm{ii}, \mathrm{b}-\mathrm{i}, \mathrm{c}-\mathrm{iii}$
C) a-iii, b-i, c-ii
D) $\quad \mathrm{a}-\mathrm{iii}, \mathrm{b}-\mathrm{ii}, \mathrm{c}-\mathrm{i}$
100. A mixture of hydrogen and oxygen in the $2: 1$ volume ratio is allowed to diffuse through a porous portion. The composition of gas coming out initially,
vol of H_{2} : vol of O_{2}, is
A) $8: 1$
B) $4: 1$
C) $2: 1$
D) $\quad 1: 1$
101. Find out the microstate for p^{5}
A) 6
B) 7
C) 8
D) 9
102. $\left(\frac{\partial U}{\partial V}\right)_{T}$ for an ideal gas is
A) Zero
B) Positive
C) Negative
D) Infinity
103. Which of the following may be used to define chemical potential?
(i) $\left(\frac{\partial G}{\partial n_{i}}\right) T, P, n j$
(ii) $\left(\frac{\partial H}{\partial n_{i}}\right) S, P, n j$
(iii) $\left(\frac{\partial A}{\partial n_{i}}\right) T, V, n j$
(iv) $\left(\frac{\partial U}{\partial n_{i}}\right) S, V, n j ; \quad i \neq j$
A) i only
B) i\& ii only
C) iii \& iv only
D) i, ii, iii, \& iv
104. Which among the following is the condition for a reversible process?
A) $\quad \Delta \mathrm{H}_{\text {(universe) }}<0$
B) $\quad \Delta \mathrm{S}_{\text {(universe) }}=0$
C) $\Delta \mathrm{U}_{\text {(universe) }}<0$
D) $\quad \Delta \mathrm{S}_{\text {(universe) }>}>0$
105. For the following reaction, the partial pressures of CO_{2} and CO are 4 and 8 atm . respectively at equilibrium at $1000 \mathrm{~K} . \mathrm{Kp}$ for the reaction is $\mathrm{C}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{CO}_{(\mathrm{g})}$
A) 32 atm
B) 4 atm
C) 16 atm
D) 2 atm
106. In the pressure temperature diagram of a one component system, the point where the solid- liquid and liquid- vapour curves intersect is
A) Critical point
B) Triple point
C) Melting point
D) Boiling point
107. Internal energy in terms of partition function (Q) is given by
A) $\quad k T^{2}\left(\frac{\partial \ln Q}{\partial T}\right)_{V, N}$
B) $k T^{2}\left(\frac{\partial \ln Q}{\partial T}\right)_{P, N}$
C) $\quad k T\left(\frac{\partial \ln Q}{\partial V}\right)_{T, N}$
D) $\quad-k T \ln Q$
108. For the reaction $2 \mathrm{~A} \rightarrow \mathrm{~B}+\mathrm{C}$ $\frac{-d[A]}{d t}=\mathrm{k}[\mathrm{A}]^{2}, \mathrm{t}_{1 / 2}$ of this reaction is
A) $\frac{1}{k}$
B) $\frac{1}{\left[A_{0}\right]^{2} k}$
C) $\frac{1}{\left[A_{0}\right] k}$
D) $\frac{1}{\left[A_{0}\right]^{3} k}$
109. A plot of $\log [\mathrm{A}]$ versus time (t) gives a straight line with a negative slope. The order of the reaction is
A) zero
B) 1
C) 2
D) 3
110. The specific reaction rate of decomposition of a compound is represented by $\operatorname{lnk}=11.5-\frac{12510}{T}$. The energy of activation of the reaction in $\mathrm{kJ} / \mathrm{mol}$ is
A) 250
B) 125
C) 85
D) 104
111. According to absolute reaction rate theory, the molar entropy of activation ΔS^{*} of an elementary bimolecular reaction is
A) Zero
B) Positive
C) Negative
D) Positive for endothermic reaction and negative for exothermic reaction
112. The number of electrons lost during electrolysis of $0.355 \mathrm{~g} \mathrm{of} \mathrm{Cl}^{-}$is
A) $\quad 0.001 \mathrm{~N}_{0}$
B) $\quad 0.01 \mathrm{~N}_{0}$
C) $\quad 0.02 \mathrm{~N}_{0}$
D) $\quad 0.01 / 2 \mathrm{~N}_{0}$
113. The Freundlich adsorption isotherm is
A) $\theta=c_{1} p^{1 / c_{2}}$
B) $\left.\quad \theta=c_{1} \ln \left(c_{2} p\right)\right)$
C) $\theta=\frac{K p}{1+K p}$
D) $\mathrm{Kp}=\frac{\theta}{1-\theta}$
114. Match the following

Column I

a Catalyst and reactants in different phase
b The phenomenon of one of the ii Heterogeneous catalysis products acts as a catalyst
c Catalyst and reactants in the iii Negative catalysis same phase
d When the catalyst reduces the iv Auto catalysis speed of the reaction
A) a-ii, b-iv, c-iii, d-i
B) a- ii, b-i, c-iv, d-iii
C) a-ii, b-iv, c-i, d-iii
D) a-iii, b-ii, c-iv, d-i
115. The presence of electrical charges on colloidal particles is used in
A) Ultra filtration
B) Dialysis
C) Brownian movement
D) Electrophoresis
116. The p^{H} of a mixture of 0.01 M acetic acid and 0.1 M sodium acetate is $\left(p^{K_{a}}\right.$ of acetic acid is 4.76)
A)
4.46
B) $\quad 5.76$
C) $\quad 3.76$
D) 4.76
117. The ionic strength of a $0.05 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ aqueous solution is
A) $\quad 0.15 \mathrm{M}$
B) $\quad 0.25 \mathrm{M}$
C) $\quad 0.025 \mathrm{M}$
D) $\quad 0.05 \mathrm{M}$
118. Calomel electrode is reversible with respect to
A) Hg^{2+}
B) $(\mathrm{Hg})_{2}{ }^{2+}$
C) Both Hg^{2+} and Cl^{-}
D) Cl^{-}
119. The emf of the concentration cell $\mathrm{Pt}\left|\mathrm{H}_{2}(1 \mathrm{~atm})\right| \mathrm{HCl}\left(\mathrm{a}_{1}\right)\left|\mathrm{HCl}\left(\mathrm{a}_{2}\right)\right| \mathrm{H}_{2}(1 \mathrm{~atm}) \mid \mathrm{Pt}$ is
A) $\quad \mathrm{E}=2 t_{-} \frac{R T}{F} \ln \frac{\left(a_{ \pm}\right)_{2}}{\left(a_{ \pm}\right)_{1}}$
B) $\quad \mathrm{E}=2 t_{+} \frac{R T}{F} \ln \frac{\left(a_{ \pm}\right)_{2}}{\left(a_{ \pm}\right)_{1}}$
C) $\quad \mathrm{E}=2 t_{-} \frac{R T}{F} \ln \frac{\left(a_{ \pm}\right)_{1}}{\left(a_{ \pm}\right)_{2}}$
D) $\quad \mathrm{E}=2 t_{+} \frac{R T}{F} \ln \frac{\left(a_{ \pm}\right)_{1}}{\left(a_{ \pm}\right)_{2}}$
120. Which of the following diagrams represent the conductometric titration curve of the precipitation reaction of KCl with AgNO_{3} ?

A) I
B) II
C) III
D) IV

